Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24.571
1.
Phys Med ; 121: 103360, 2024 May.
Article En | MEDLINE | ID: mdl-38692114

This paper reports the development of dosimeters based on plastic scintillating fibers imaged by a charge-coupled device camera, and their performance evaluation through irradiations with the electron Flash research accelerator located at the Centro Pisano Flash Radiotherapy. The dosimeter prototypes were composed of a piece of plastic scintillating fiber optically coupled to a clear optical fiber which transported the scintillation signal to the readout systems (an imaging system and a photodiode). The following properties were tested: linearity, capability to reconstruct the percentage depth dose curve in solid water and to sample in time the single beam pulse. The stem effect contribution was evaluated with three methods, and a proof-of-concept one-dimensional array was developed and tested for online beam profiling. Results show linearity up to 10 Gy per pulse, and good capability to reconstruct both the timing and spatial profiles of the beam, thus suggesting that plastic scintillating fibers may be good candidates for low-energy electron Flash dosimetry.


Electrons , Plastics , Radiation Dosimeters , Radiotherapy Dosage , Scintillation Counting , Electrons/therapeutic use , Scintillation Counting/instrumentation , Radiometry/instrumentation
2.
Bull Environ Contam Toxicol ; 112(5): 75, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733395

This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑13PBDEs) in soils ranged from 14.6 to 278.4 ng/g dry weight (dw), and in plants ranged from 11.5 to 176 ng/g dw. Both soil and plant samples showed that BDE-209 was the most important congener, the pollution level in soil and plant was similar, and the composition of PBDEs congener was similar. In the soil column (50 cm), the radial migration of PBDEs was mainly concentrated in the 0-30 cm section. Except for BDE-66, which was mainly located in the 20-30 cm soil layer, the concentration of PBDEs was the highest in the 0-10 cm region. Furthermore, the environmental risks of PBDEs in soil and plants were evaluated by hazard quotient method, and the HQ values were all < 1, which did not exhibit any ecological risk. The evaluation results also showed that the ecological risk of PBDEs in soil was higher than that of plants, especially penta-BDE, which should be paid more attention.


Environmental Monitoring , Halogenated Diphenyl Ethers , Plastics , Soil Pollutants , Soil , Halogenated Diphenyl Ethers/analysis , Soil Pollutants/analysis , Risk Assessment , Soil/chemistry , Plastics/analysis , Plants , China
3.
PLoS One ; 19(5): e0299877, 2024.
Article En | MEDLINE | ID: mdl-38722829

This study investigated the decision-making dynamics for pro-environmental behavior among Thai university students, focusing on reducing the consumption of single-use plastics (SUP). By adopting a dynamic approach to the Theory of Planned Behavior (TPB), the research examined the influence of psychosocial factors, including attitudes, perceived behavioral control, and subjective norms, on SUP reduction intention at different phases of behavior change. Using structural equation modelling, we analyzed quantitative data (n = 317) from the selected universities. The results revealed that attitudes predicted behavioral intentions only among individuals in the contemplation phase of reducing SUP. Attitudes had a small but limited influence on the behavioral intentions of students who had not yet acted. Perceived behavioral control, on the other hand, significantly impacted behavioral intentions across all phases of behavior change, highlighting its importance in SUP reduction. The study also confirmed subjective norms' positive influence on students' behavioral intentions in the pre-contemplation phase. Practical implications suggested segmenting residents based on their behavior change phase so that public policymakers can allocate resources more efficiently and effectively by tailoring campaigns to specific behavior change phases, ultimately promoting sustainable behavior among university students.


Habits , Plastics , Students , Humans , Students/psychology , Universities , Male , Female , Thailand , Young Adult , Intention , Adult , Adolescent , Attitude , Surveys and Questionnaires , Southeast Asian People
4.
Bull Environ Contam Toxicol ; 112(5): 73, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38691196

Southeast Asia (SEA) faces significant environmental challenges due to rapid population growth and economic activity. Rivers in the region are major sources of plastic waste in oceans. Concerns about their contribution have grown, but knowledge of microplastics in the area is still limited. This article compares microplastic levels in sediment and water from urban zones of three major rivers in SEA: Chao Phraya River (Thailand), Saigon River (Vietnam), and Citarum River (Indonesia). The study reveals that in all three rivers, microplastics were found, with the highest concentrations in Chao Phraya's water (80 ± 60 items/m3) and Saigon's sediment (9167 ± 4559 items/kg). The variations in microplastic sizes and concentrations among these rivers may be attributed to environmental factors and the exposure duration of plastic to the environment. Since these rivers are important water supply sources, rigorous land-use regulations and raising public awareness are crucial to mitigate plastic and microplastic pollution.


Environmental Monitoring , Microplastics , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Microplastics/analysis , Population Density , Asia, Southeastern , Thailand , Vietnam , Water Pollution, Chemical/statistics & numerical data , Plastics/analysis , Indonesia , Geologic Sediments/chemistry
7.
Protein Eng Des Sel ; 372024 Jan 29.
Article En | MEDLINE | ID: mdl-38713696

Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.


Directed Molecular Evolution , Protein Engineering , Directed Molecular Evolution/methods , Plastics/chemistry , Plastics/metabolism , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Enzymes/genetics , Enzymes/chemistry , Enzymes/metabolism
8.
Water Environ Res ; 96(5): e11033, 2024.
Article En | MEDLINE | ID: mdl-38720414

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Bathing Beaches , Environmental Monitoring , Geologic Sediments , Microplastics , India , Microplastics/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Plastics/chemistry , Plastics/analysis
9.
Water Environ Res ; 96(5): e11018, 2024 May.
Article En | MEDLINE | ID: mdl-38712584

Applicable and low-cost ultrafiltration membranes based on waste polystyrene (WPS) blend and poly vinylidene fluoride (PVDF) were effectively cast on nonwoven support using phase inversion method. Analysis was done into how the WPS ratio affected the morphology and antifouling performance of the fabricated membranes. Cross flow filtration of pure water and various types of polluted aqueous solutions as the feed was used to assess the performance of the membranes. The morphology analysis shows that the WPS/PVDF membrane layer has completely changed from a spongy structure to a finger-like structure. In addition, the modified membrane with 50% WPS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection of the membrane with a reduction in permeate flux due to the addition of PVDF. With a water permeability of 50 LMH and 44 LMH, respectively, the optimized WPS-PVDF membrane with 50% WPS could reject 81% and 74% of Congo red dye (CR) and methylene blue dye (MB), respectively. The flux recovery ratio (FRR) reached to 88.2% by increasing PVDF concentration with 50% wt. Also, this membrane has the lowest irreversible fouling (Rir) value of 11.7% and lowest reversible fouling (Rr) value of 27.9%. The percent of cleaning efficiency reach to 71%, 90%, and 85% after eight cycles of humic acid (HA), CR, and MB filtration, respectively, for the modified PS-PVDF (50%-50%). However, higher PVDF values cause the membrane's pores to become clogged, increase the irreversible fouling, and decrease the cleaning efficiency. In addition to providing promising filtration results, the modified membrane is inexpensive because it was made from waste polystyrene, and as a result, it could be scaled up to treat colored wastewater produced by textile industries. PRACTITIONER POINTS: Recycling of plastic waste as an UF membrane for water/wastewater treatment was successfully prepared and investigated. Mechanical properties showed reasonable response with adding PVDF. The modified membrane with 50% PS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection.


Coloring Agents , Fluorocarbon Polymers , Membranes, Artificial , Ultrafiltration , Water Pollutants, Chemical , Water Purification , Ultrafiltration/methods , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Plastics/chemistry , Waste Disposal, Fluid/methods , Polyvinyls/chemistry , Permeability
11.
Appl Radiat Isot ; 209: 111329, 2024 Jul.
Article En | MEDLINE | ID: mdl-38701594

A 3D-printed bolus is being developed to deliver accurate doses to superficial cancers. In this study, flexible thermoplastic filaments, specifically PLA, TPU, PETG, and HIPS, were fabricated into boluses and then compared to commercial bolus for the variation of the dose elevation region of photon beams. The experimental results indicate that the maximum dose depth is similar, and the consistent trend of the percentage depth dose confirms the potential usage as a build-up bolus.


Plastics , Printing, Three-Dimensional , Radiotherapy Dosage , Humans
12.
Environ Sci Technol ; 58(19): 8336-8348, 2024 May 14.
Article En | MEDLINE | ID: mdl-38703133

The growing environmental consequences caused by plastic pollution highlight the need for a better understanding of plastic polymer cycles and their associated additives. We present a novel, comprehensive top-down method using inflow-driven dynamic probabilistic material flow analysis (DPMFA) to map the plastic cycle in coastal countries. For the first time, we covered the progressive leaching of microplastics to the environment during the use phase of products and modeled the presence of 232 plastic additives. We applied this methodology to Norway and proposed initial release pathways to different environmental compartments. 758 kt of plastics distributed among 13 different polymers was introduced to the Norwegian economy in 2020, 4.4 Mt was present in in-use stocks, and 632 kt was wasted, of which 15.2 kt (2.4%) was released to the environment with a similar share of macro- and microplastics and 4.8 kt ended up in the ocean. Our study shows tire wear rubber as a highly pollutive microplastic source, while most macroplastics originated from consumer packaging with LDPE, PP, and PET as dominant polymers. Additionally, 75 kt of plastic additives was potentially released to the environment alongside these polymers. We emphasize that upstream measures, such as consumption reduction and changes in product design, would result in the most positive impact for limiting plastic pollution.


Plastics , Norway , Environmental Monitoring , Microplastics , Water Pollutants, Chemical
13.
Molecules ; 29(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38731523

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Cell Survival , Macrophages , Microplastics , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/metabolism , Animals , Mice , Nanoparticles/chemistry , Plastics/chemistry , RAW 264.7 Cells , Gene Expression/drug effects , Cell Line , Gene Expression Regulation/drug effects , Waste Products/analysis , Particle Size
14.
Environ Monit Assess ; 196(6): 544, 2024 May 14.
Article En | MEDLINE | ID: mdl-38740657

A comprehensive analysis of municipal solid plastic waste (MSPW) management while emphasizing plastic pollution severity in coastal cities around the world is mandatory to alleviate the augmenting plastic waste footprint in nature. Thus, decision-makers' persuasion for numerous management solutions of MSPW flow-control can be met through meditative systematic strategies at the regional level. To forecast solutions focused on systematic policies, an agent-based system dynamics (ASD) model has been developed and simulated from 2023 to 2040 while considering significant knit parameters for MSPW management of Khulna City in Bangladesh. Baseline simulation results show that per-capita plastic waste generation will increase to 11.6 kg by 2040 from 8.92 kg in 2023. Eventually, the landfilled quantity of plastic waste has accumulated to 70,000 tons within 18 years. Moreover, the riverine discharge has increased to 834 tons in 2040 from a baseline quantity of 512 tons in 2023. So the plastic waste footprint index (PWFI) value rises to 24 by 2040. Furthermore, the absence of technological initiatives is responsible for the logarithmic rise of non-recyclable plastic waste to 1.35*1000=1350 tons. Finally, two consecutive policy scenarios with baseline factors such as controlled riverine discharge, increased collection and separation of plastic waste, expansion of recycle business, and locally achievable plastic conversion technologies have been simulated. Therefore, policy 2, with 69% conversion, 80% source separation, and 50% riverine discharge reduction of MSPW, has been found adequate from a sustainability perspective with the lowest PWFI ranges of 3.97 to 1.07 alongside a per-capita MSPW generation of 7.63 to 10 kg from 2023 till 2040.


Cities , Plastics , Solid Waste , Waste Management , Bangladesh , Plastics/analysis , Solid Waste/analysis , Solid Waste/statistics & numerical data , Waste Management/methods , Refuse Disposal/methods , Forecasting , Environmental Policy , Environmental Monitoring/methods , Recycling
15.
Transfusion ; 64(5): 808-823, 2024 May.
Article En | MEDLINE | ID: mdl-38590100

BACKGROUND: Phthalate chemicals are used to manufacture plastic medical products, including many components of cardiopulmonary bypass (CPB) circuits. We aimed to quantify iatrogenic phthalate exposure in pediatric patients undergoing cardiac surgery and examine the link between phthalate exposure and postoperative outcomes. STUDY DESIGN AND METHODS: The study included pediatric patients undergoing (n=122) unique cardiac surgeries at Children's National Hospital. For each patient, a single plasma sample was collected preoperatively and two additional samples were collected postoperatively upon return from the operating room and the morning after surgery. Concentrations of di(2-ethylhexyl) phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. RESULTS: Patients were subdivided into three groups, according to surgical procedure: (1) cardiac surgery not requiring CPB support, (2) cardiac surgery requiring CPB with a crystalloid prime, and (3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with an RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience postoperative complications. RBC washing was an effective strategy to reduce phthalate levels in CPB prime. DISCUSSION: Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with an RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure.


Cardiopulmonary Bypass , Humans , Cardiopulmonary Bypass/adverse effects , Female , Male , Child, Preschool , Infant , Child , Diethylhexyl Phthalate/blood , Prevalence , Plastics , Phthalic Acids/blood , Cardiac Surgical Procedures/adverse effects , Adolescent , Infant, Newborn
16.
J Hazard Mater ; 471: 134377, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38663298

The Ganga is the largest river in India, serves as a lifeline for agriculture, drinking water, and religious rites. However, it became highly polluted due to the influx of industrial wastes and untreated sewages, leading to the decline of aquatic biodiversity. This study investigated the microbial diversity and plastic-xenobiotic degrading enzymes of six sediment metagenomes of river Ganga at Prayagraj (RDG, TSG, SDG) and Devprayag (KRG, BNG, BRG). The water quality parameters, higher values of BOD (1.8-3.7 ppm), COD (23-29.2 ppm) and organic carbon (0.18-0.51%) were recorded at Prayagraj. Comparative analysis of microbial community structure between Prayagraj and Devprayag revealed significant differences between Bacteroidetes and Firmicutes, which emerging as the predominant bacterial phyla across six sediment samples. Notably, their prevalence was highest in the BRG samples. Furthermore, 25 OTUs at genus level were consistent across all six samples. Alpha diversity exhibited minimal variation among samples, while beta diversity indicated an inverse relationship between species richness and diversity. Co-occurrence network analysis established that genera from the same and different groups of phyla show positive co-relations with each other. Thirteen plastic degrading enzymes, including Laccase, Alkane-1 monooxygenase and Alkane monooxygenase, were identified from six sediment metagenomes of river Ganga, which can degrade non-biodegradable plastic viz. Polyethylene, Polystyrene and Low-density Polyethelene. Further, 18 xenobiotic degradation enzymes were identified for the degradation of Bisphenol, Xylene, Toluene, Polycyclic aromatic hydrocarbon, Styrene, Atrazene and Dioxin etc. This is the first report on the identification of non-biodegradable plastic degrading enzymes from sediment metagenomes of river Ganga, India. The findings of this study would help in pollution abatement and sustainable management of riverine ecosystem.


Bacteria , Biodegradation, Environmental , Geologic Sediments , Rivers , Geologic Sediments/microbiology , Rivers/microbiology , Rivers/chemistry , Bacteria/genetics , Bacteria/enzymology , Biodiversity , Xenobiotics/metabolism , Water Pollutants, Chemical/analysis , India , Plastics , Metagenome , Metagenomics , Benzhydryl Compounds
17.
Chemosphere ; 355: 141813, 2024 May.
Article En | MEDLINE | ID: mdl-38575082

The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.


Microplastics , Polyethylene Terephthalates , Humans , Polyethylene Terephthalates/toxicity , Polymers , Inflammation/chemically induced , Oxidative Stress , Autophagy , Plastics , Polyethylene
18.
Mar Pollut Bull ; 202: 116312, 2024 May.
Article En | MEDLINE | ID: mdl-38579445

This paper examines the distribution and chemical properties of beached plastic pellets along the Ionian and Tyrrhenian coasts of Southern Italy. Three locations have been sampled: Agnone Bagni (SR) and Paradiso (ME) on the Ionian coast of Sicily, Baia del Tono in Milazzo (ME) on the Sicilian Tyrrhenian coast, and Pizzo Calabro (VV) in Calabria on the Tyrrhenian coast. Variations in shape, size, compactness, color, and other physical features, correlated with residence times and transport, has been highlighted. Raman spectroscopy, used in a portable configuration, enabled rapid identification of polymer types, demonstrating its utility for on-site plastic pollutant monitoring. Polyethylene and polypropylene were the predominant polymers. Principal component analysis of the spectra determined the optimal chemometric classification of pellets by composition, avoiding interference or distortion. In conclusion, the study provided preliminary insights into pellet abundance, composition, weathering extent, and distribution across these shorelines, underscoring the importance of regular beach monitoring.


Environmental Monitoring , Plastics , Spectrum Analysis, Raman , Water Pollutants, Chemical , Environmental Monitoring/methods , Plastics/analysis , Italy , Water Pollutants, Chemical/analysis , Principal Component Analysis
19.
Mar Pollut Bull ; 202: 116298, 2024 May.
Article En | MEDLINE | ID: mdl-38581733

As plastic pollution continues to accumulate at the seafloor, concerns around benthic ecosystem functionality heightens. This research demonstrates the systematic effects of polyester microfibers on seafloor organic matter consumption rates, an important benthic ecosystem function connected to multiple reactions and processes. We used a field-based assay to measure the loss of organic matter, both with and without polyester microfiber contamination. We identified sediment organic matter content, mud content, and mean grain size as the main drivers of organic matter consumption, however, polyester microfiber contamination decoupled ecosystem relationships and altered observed organic matter cycling dynamics. Organic matter consumption rates varied across horizontal and vertical spaces, highlighting that consumption and associated plastic effects are dependent on environmental heterogeneity at both small (within sites) and larger (between sites) scales. Our results emphasize the important role habitat heterogeneity plays in seafloor organic matter consumption and the associated effects of plastic pollution on ecosystem function.


Ecosystem , Environmental Monitoring , Geologic Sediments , Plastics , Polyesters , Water Pollutants, Chemical , Geologic Sediments/chemistry , Polyesters/analysis , Water Pollutants, Chemical/analysis , Plastics/analysis
20.
Mar Pollut Bull ; 202: 116302, 2024 May.
Article En | MEDLINE | ID: mdl-38593712

Plastic pollution poses global and societal concerns, especially from discarded fishing gear, threatening seabed environments like coral reefs. This study examines the incorporation of lost and/or abandoned fishing gear - specifically synthetic lines, and filaments - into the structure of orange tree coral, Dendrophyllia ramea along the coast of Portugal, in the North-East Atlantic Ocean. The specimens were inadvertently captured by local fishers (Sines and Cascais), with 6 % showing filaments inside their structure, raising questions about their potential impact on coral health. We discuss the implications of understanding the interactions between plastics, fishing gear, and corals, which is important for developing conservation strategies. We address the need for improved of measures aimed at reducing the impact of fishing gear on corals, emphasizing the importance of endorsing biodegradable fishing materials and supporting lost gear retrieval initiatives. Furthermore, we emphasize the urgent need to communicate these issues to both fishers and stakeholders.


Anthozoa , Fisheries , Plastics , Portugal , Animals , Atlantic Ocean , Coral Reefs , Conservation of Natural Resources , Environmental Monitoring
...